Cho \(\mathop {\lim }\limits_{x \to \,{x_0}} f\left( x \right) = L;\) \(\,\mathop {\lim }\limits_{x \to \,{x_0}} g\left( x \right) = M\), với \(L,M \in \mathbb{R}\). Chọn khẳng địn...

Câu hỏi :

Cho \(\mathop {\lim }\limits_{x \to \,{x_0}} f\left( x \right) = L;\) \(\,\mathop {\lim }\limits_{x \to \,{x_0}} g\left( x \right) = M\), với \(L,M \in \mathbb{R}\). Chọn khẳng định sai.

A. \(\mathop {\lim }\limits_{x \to \,{x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\).  

B. \(\mathop {\lim }\limits_{x \to \,{x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\). 

C. \(\mathop {\lim }\limits_{x \to \,{x_0}} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{L}{M}\).  

D. \(\mathop {\lim }\limits_{x \to \,{x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\). 

* Đáp án

C

* Hướng dẫn giải

Khẳng định sai là \(\mathop {\lim }\limits_{x \to \,{x_0}} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{L}{M}\) vì không có điều kiện \(M \ne 0\).

Chọn C.

Copyright © 2021 HOCTAP247