Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\left( {2{m^2} - 5m + 2} \right){\left( {x - 1} \right)^{18}}\left( {{x^{81}} - 2} \right) + 2x + 3 = 0\) có nghiệm:

Câu hỏi :

Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\left( {2{m^2} - 5m + 2} \right){\left( {x - 1} \right)^{18}}\left( {{x^{81}} - 2} \right) + 2x + 3 = 0\) có nghiệm:

A. \(m \in \mathbb{R}\).  

B. \(m \in \mathbb{R}\backslash \left\{ {\dfrac{1}{2}\,;\,2} \right\}\)   

C. \(m \in \left\{ {\dfrac{1}{2}\,;\,2} \right\}\).  

D. \(m \in \left\{ {0;\dfrac{1}{2}\,;\,2} \right\}\). 

* Đáp án

A

* Hướng dẫn giải

TH1: \(2{m^2} - 5m + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{1}{2}\\m = 2\end{array} \right.\), khi đó phương trình trở thành \(2x + 3 = 0 \Leftrightarrow x =  - \dfrac{3}{2}\).

\( \Rightarrow \) phương trình có nghiệm.

\( \Rightarrow m = \dfrac{1}{2};\,\,m = 2\) thỏa mãn.

TH2: \(2{m^2} - 5m + 2 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne \dfrac{1}{2}\\m \ne 2\end{array} \right.\), phương trình \(\left( {2{m^2} - 5m + 2} \right){\left( {x - 1} \right)^{18}}\left( {{x^{81}} - 2} \right) + 2x + 3 = 0\) là phương trình đa thức bậc lẻ nên luôn có nghiệm.

Vậy phương trình đã cho có nghiệm với mọi \(m \in \mathbb{R}\).

Chọn A. 

Copyright © 2021 HOCTAP247