Câu hỏi :

Chọn mệnh đề sai

A. \(\lim \dfrac{1}{{{2^n}}} = 0\)  

B. \(\lim \dfrac{3}{{n + 1}} = 0\)  

C. \(\lim \left( {\sqrt {{n^2} + 2n + 3}  - n} \right) = 1\)  

D. \(\lim {\left( { - 2} \right)^n} =  + \infty \) 

* Đáp án

D

* Hướng dẫn giải

Đáp án A: \(\lim \dfrac{1}{{{2^n}}} = 0\) đúng.

Đáp án B: \(\lim \dfrac{3}{{n + 1}} = \lim \left( {\dfrac{{\dfrac{3}{n}}}{{1 + \dfrac{1}{n}}}} \right) = \dfrac{0}{1} = 0\) đúng.

Đáp án C: \(\lim \left( {\sqrt {{n^2} + 2n + 3}  - n} \right) = \lim \dfrac{{2n + 3}}{{\sqrt {{n^2} + 2n + 3}  + n}}\) \( = \lim \dfrac{{2 + \dfrac{3}{n}}}{{\sqrt {1 + \dfrac{2}{n} + \dfrac{3}{{{n^2}}}}  + 1}} = 1\) đúng.

Chọn D.

Copyright © 2021 HOCTAP247