Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và \(AB \bot BC\). Hình chóp \(S.ABC\) có bao nhiêu mặt là tam giác vuông?

Câu hỏi :

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và \(AB \bot BC\). Hình chóp \(S.ABC\) có bao nhiêu mặt là tam giác vuông? 

A. 4

B. 3

C. 2

D. 1

* Đáp án

A

* Hướng dẫn giải

 

Vì \(SA \bot \left( {ABC} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot AB\\SA \bot AC\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\Delta SAB\\\Delta SAC\end{array} \right.\) là các tam giác vuông.

Ta có: \(AB \bot BC \Rightarrow \Delta ABC\) vuông tại \(B\).

Ta có: \(\left\{ \begin{array}{l}BC \bot AB\,\,\left( {gt} \right)\\BC \bot SA\,\,\left( {do\,\,SA \bot \left( {ABC} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\) \( \Rightarrow BC \bot SB \Rightarrow \Delta SBC\) vuông tại \(B\).

Vậy hình chóp \(S.ABC\) có cả 4 mặt là tam giác vuông.

Chọn A.

Copyright © 2021 HOCTAP247