Có bao nhiêu giá trị nguyên của tham số thực \(m\) để \(I jw...

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số thực \(m\) để \(I < 12\) biết \(I = \mathop {\lim }\limits_{x \to  - 1} \left( {{x^4} - 2mx + {m^2} + 3} \right)\) 

A. 6

B. 5

C. 8

D. 7

* Đáp án

B

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}I = \mathop {\lim }\limits_{x \to  - 1} \left( {{x^4} - 2mx + {m^2} + 3} \right)\\\,\,\,\, = 1 + 2m + {m^2} + 3 = {m^2} + 2m + 4\end{array}\)

Do đó

\(I < 12 \Leftrightarrow {m^2} + 2m - 8 < 0 \Leftrightarrow  - 4 < m < 2\).

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2; - 1;0;1} \right\}\).

Vậy có 5 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.

Chọn B.

Copyright © 2021 HOCTAP247