Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AD\) và \(G\) là trọng tâm tam giác \(SBD\). Mặt phẳng \(\left( {MNG} \right)...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AD\) và \(G\) là trọng tâm tam giác \(SBD\). Mặt phẳng \(\left( {MNG} \right)\) cắt \(SC\) tại điểm \(H\). Tính \(\dfrac{{SH}}{{SC}}\).

A. \(\dfrac{2}{3}\)     

B. \(\dfrac{2}{5}\)         

C. \(\dfrac{1}{4}\)  

D. \(\dfrac{1}{3}\)  

* Đáp án

B

* Hướng dẫn giải

Gọi \(O = AC \cap BD \Rightarrow O\) là trung điểm của \(AC,\,\,BD\).

\( \Rightarrow SO\) là đường trung tuyến của \(\Delta SBD \Rightarrow G \in SO \Rightarrow G \in \left( {SAC} \right)\).

Chọn \(SC \subset \left( {SAC} \right)\).

Xét \(\left( {GMN} \right)\) và \(\left( {SAC} \right)\) có \(G\) chung.

Trong \(\left( {ABCD} \right)\) gọi \(E = MN \cap AC\) ta có: \(\left\{ \begin{array}{l}E \in MN \subset \left( {GMN} \right)\\E \in AC \subset \left( {SAC} \right)\end{array} \right.\) \( \Rightarrow E \in \left( {GMN} \right) \cap \left( {SAC} \right)\).

\( \Rightarrow \left( {GMN} \right) \cap \left( {SAC} \right) = GE\).

Trong \(\left( {SAC} \right)\) gọi \(H = GE \cap SC\) ta có \(\left\{ \begin{array}{l}H \in SC\\H \in GE \subset \left( {GMN} \right)\end{array} \right. \Rightarrow H = SC \cap \left( {GMN} \right)\).

Ta có \(MN\) là đường trung bình của \(\Delta ABD \Rightarrow MN//BD\).

Xét tam giác \(ABC\) có: \(M\) là trung điểm của \(AB,\,\,ME//BO\) nên \(E\) là trung điểm của \(AO\) (định lí đường trung bình của tam giác) \( \Rightarrow \dfrac{{EO}}{{EC}} = \dfrac{1}{3}\).

Áp dụng định lí Menelaus trong tam giác \(SOC\), cát tuyến \(EGH\) ta có \(\dfrac{{GS}}{{GO}}.\dfrac{{EO}}{{EC}}.\dfrac{{HC}}{{HS}} = 1\)

\( \Rightarrow 2.\dfrac{1}{3}.\dfrac{{HC}}{{HS}} = 1 \Rightarrow \dfrac{{HC}}{{HS}} = \dfrac{3}{2}\) \( \Rightarrow \dfrac{{SH}}{{SC}} = \dfrac{2}{5}\).

Chọn B.

Copyright © 2021 HOCTAP247