A. \({u_n} = \dfrac{{2{n^3} - 11n + 1}}{{{n^2} - 2}}\)
B. \({u_n} = \sqrt {{n^2} + 2n} - n\)
C. \({u_n} = {3^n} + {2^n}\)
D. \({u_n} = \dfrac{1}{{\sqrt {{n^2} - 2} - \sqrt {{n^2} + 4} }}\)
B
Đáp án A: ta có \(\lim {u_n} = \lim \dfrac{{2{n^3} - 11n + 1}}{{{n^2} - 2}}\)\( = \lim \dfrac{{2 - \dfrac{{11}}{{{n^2}}} + \dfrac{1}{{{n^3}}}}}{{\dfrac{1}{n} - \dfrac{2}{{{n^3}}}}} = + \infty \).
Đáp án B: \(\lim {u_n} = \lim \left( {\sqrt {{n^2} + 2} - n} \right)\)\( = \lim \dfrac{2}{{\sqrt {{n^2} + 2} + n}} = 0\).
Đáp án C: \(\lim {u_n} = \lim \left( {{3^n} + {2^n}} \right) = + \infty \).
Đáp án D: \(\lim {u_n} = \lim \dfrac{1}{{\sqrt {{n^2} - 2} - \sqrt {{n^2} + 4} }}\) \( = \lim \dfrac{{\sqrt {{n^2} - 2} + \sqrt {{n^2} + 4} }}{2} = + \infty \).
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247