Cho tứ diện \(ABCD\) có \(AC = 6a\), \(BD = 8a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AD,\,\,BC\). Biết \(AC \bot BD\). Tính độ dài đoạn thẳng \(MN\).

Câu hỏi :

Cho tứ diện \(ABCD\) có \(AC = 6a\), \(BD = 8a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AD,\,\,BC\). Biết \(AC \bot BD\). Tính độ dài đoạn thẳng \(MN\). 

A. \(MN = a\sqrt {10} \)   

B. \(MN = 7a\) 

C. \(MN = 5a\)     

D. \(MN = 10a\) 

* Đáp án

C

* Hướng dẫn giải

 

Gọi \(P\) là trung điểm của \(AB\). Theo tính chất đường trung bình của tam giác ta có:

\(\left\{ \begin{array}{l}PM//BD,\,\,PM = \dfrac{1}{2}BD = 4a\\PN//AC,\,\,PN = \dfrac{1}{2}AC = 3a\end{array} \right.\)

Lại có \(AC \bot BD\,\,\left( {gt} \right) \Rightarrow PM \bot PN \Rightarrow \Delta MNP\) vuông tại \(P\).

Áp dụng định lí Pytago trong tam giác vuông \(MNP\) ta có:  \(MN = \sqrt {P{M^2} + P{N^2}}  = \sqrt {16{a^2} + 9{a^2}}  = 5a\).

Vậy \(MN = 5a\).

Chọn C.

Copyright © 2021 HOCTAP247