Cho hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \) có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\)

Câu hỏi :

Cho hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \) có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\) 

A. \( - 2.\)  

B. \(2.\) 

C. \( - 3.\)   

D. \(1\). 

* Đáp án

A

* Hướng dẫn giải

\(\begin{array}{l}y' = \sqrt {1 - x}  + \left( {1 + x} \right)\frac{{ - 1}}{{2\sqrt {1 - x} }}\\ = \frac{{2\left( {1 - x} \right) - 1 - x}}{{2\sqrt {1 - x} }} = \frac{{1 - 3x}}{{2\sqrt {1 - x} }}\\ \Rightarrow \left\{ \begin{array}{l}a =  - 3\\b = 1\end{array} \right.\\ \Rightarrow a + b =  - 3 + 1 =  - 2\end{array}\)

Chọn A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021-2022 Trường THPT Nhân Chính

Số câu hỏi: 40

Copyright © 2021 HOCTAP247