A. \(2018\)
B. \(2017\)
C. \(a\)
D. \( + \infty \)
D
\(\begin{array}{l}L = \mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right)\dfrac{{2017}}{{{x^2} - 2ax + {a^2}}}\\L = \mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right)\dfrac{{2017}}{{{{\left( {x - a} \right)}^2}}}\\L = \mathop {\lim }\limits_{x \to {a^ + }} \dfrac{{2017}}{{x - a}}\end{array}\)
Ta có \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {a^ + }} 2017 = 2017 > 0\\\mathop {\lim }\limits_{x \to {a^ + }} \left( {x - a} \right) = 0\\x \to {a^ + } \Rightarrow x - a > 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {a^ + }} \dfrac{{2017}}{{x - a}} = + \infty \).
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247