A. \( + \infty \)
B. \(\dfrac{{12}}{5}\)
C. \(1\)
D. \( - \infty \)
A. \(f\left( x \right) = \dfrac{{{x^2} + x}}{{x - 1}}\)
B. \(f\left( x \right) = \dfrac{{{x^2} + x}}{x}\)
C. \(f\left( x \right) = \dfrac{{{x^2} + x + 1}}{x}\)
D. \(f\left( x \right) = \dfrac{{{x^2} + x + 1}}{{x - 1}}\)
A. \(\overrightarrow {MA} - m\overrightarrow {PD} \)
B. \(\overrightarrow {MN} - m\overrightarrow {PD} \)
C. \(\overrightarrow {MN} - m\overrightarrow {QC} \)
D. \(\overrightarrow {MB} - m\overrightarrow {QC} \)
A. 3
B. 1
C. 0
D. 2
A. \( - 1 + \dfrac{3}{{{{\left( {x - 2} \right)}^2}}}\)
B. \(1 + \dfrac{3}{{{{\left( {x - 2} \right)}^2}}}\)
C. \(1 - \dfrac{3}{{{{\left( {x - 2} \right)}^2}}}\)
D. \( - 1 - \dfrac{3}{{{{\left( {x - 2} \right)}^2}}}\)
A. \( + \infty \)
B. \(2\)
C. \(3\)
D. \( - \infty \)
A. \({30^0}\)
B. \({60^0}\)
C. \({45^0}\)
D. \({75^0}\)
A. \(1\)
B. \( - 1\)
C. \(0\)
D. \(\dfrac{3}{4}\)
A. \( - 3\)
B. \(0\)
C. \(7\)
D. \( + \infty \)
A. \({45^0}\)
B. \({60^0}\)
C. \({30^0}\)
D. \({90^0}\)
A. \(\left[ \begin{array}{l}x = - 21x - 33\\y = - 21x + 31\end{array} \right.\)
B. \(\left[ \begin{array}{l}x = - \dfrac{1}{{21}}x - 33\\y = - \dfrac{1}{{21}}x + 31\end{array} \right.\)
C. \(\left[ \begin{array}{l}x = 21x - 33\\y = 21x + 31\end{array} \right.\)
D. \(\left[ \begin{array}{l}x = \dfrac{1}{{21}}x - 33\\y = \dfrac{1}{{21}}x + 31\end{array} \right.\)
A. \(m = \pm 2\)
B. Không tồn tại \(m\)
C. \(m = \pm 4\)
D. \(m = \pm \sqrt 5 \)
A. \( - 29\)
B. Không xác định
C. \( + \infty \)
D. \( - \infty \)
A. \(\dfrac{{\sqrt 2 }}{2}\)
B. \(\dfrac{{\sqrt 6 }}{3}\)
C. \(\dfrac{{\sqrt 3 }}{2}\)
D. \(\dfrac{{\sqrt 3 }}{3}\)
A. \(\dfrac{{a\sqrt {15} }}{6};\,\,\dfrac{{a\sqrt 3 }}{3}\)
B. \(\dfrac{{\sqrt 3 }}{2};\,\,\dfrac{{a\sqrt 7 }}{2}\)
C. \(\dfrac{{a\sqrt {15} }}{6};\,\,\dfrac{{a\sqrt 7 }}{2}\)
D. \(\dfrac{{a\sqrt 3 }}{3};\,\,\dfrac{{a\sqrt 7 }}{2}\)
A. \(1\)
B. \( - \infty \)
C. \( + \infty \)
D. \(0\)
A. \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = 0\)
B. \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\)
C. Hàm số gián đoạn tại \(x = 1\)
D. \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 0\)
A. \(2018\)
B. \(2017\)
C. \(a\)
D. \( + \infty \)
A. \({150^0}\)
B. \({30^0}\)
C. \({170^0}\)
D. \({10^0}\)
A. \(m \ge \dfrac{9}{8}\)
B. \(m > \dfrac{9}{8}\)
C. \(m \le \dfrac{9}{8}\)
D. \(m < \dfrac{9}{8}\)
A. \(\dfrac{{\sqrt {13} }}{4}\)
B. \(\sqrt 3 \)
C. \(1\)
D. \(\dfrac{4}{{\sqrt {13} }}\)
A. \(\dfrac{{{a^2}}}{2}\)
B. \({a^2}\dfrac{{\sqrt 3 }}{2}\)
C. \({a^2}\)
D. \({a^2}\dfrac{{\sqrt 2 }}{2}\)
A. \(SA \bot \left( {ABCD} \right)\)
B. \(AC \bot \left( {SBD} \right)\)
C. \(BD \bot \left( {SAC} \right)\)
D. \(AB \bot \left( {SAC} \right)\)
A. \(a = 4\)
B. \(a = - 6\)
C. \(a = - 5\)
D. \(a = 6\)
A. \(\dfrac{{80}}{{27}}\)
B. \(\dfrac{{40}}{{27}}\)
C. \( - \dfrac{{40}}{{27}}\)
D. \( - \dfrac{{80}}{{27}}\)
A. \({30^0}\)
B. \({60^0}\)
C. \({90^0}\)
D. \({45^0}\)
A. \(\mathbb{R}\)
B. \(\left[ {0; + \infty } \right)\)
C. \(x \in \emptyset \)
D. \(x \in \left( { - \infty ;0} \right]\)
A. \(1,9974\)
B. \(1,9975\)
C. \(1,9976\)
D. \(1,9977\)
A. \(\dfrac{{8\pi }}{3}\)
B. \(2\pi \)
C. \(8\)
D. \(\dfrac{{4\sqrt 3 }}{3}\)
A. \(\frac{-5}{4}\)
B. \(\frac{-3}{4}\)
C. \(\frac{-5}{7}\)
D. \(\frac{5}{4}\)
A. 291
B. 290
C. 293
D. 292
A. \(x=\frac{\pi }{4}+k2\pi \) và \(x=\frac{-\pi }{6}+\frac{k2\pi }{3}\)
B. \(x=\frac{\pi }{2}+k2\pi \) và \(x=\frac{-\pi }{6}+\frac{k2\pi }{3}\)
C. \(x=\frac{\pi }{2}+k2\pi \) và \(x=\frac{-\pi }{6}+\frac{k2\pi }{7}\)
D. \(x=\frac{\pi }{2}+k2\pi \) và \(x=\frac{\pi }{6}+\frac{k2\pi }{3}\)
A. \(\dfrac{3}{2}\)
B. \( - \dfrac{3}{2}\)
C. \( + \infty \)
D. \( - \infty \)
A. \( - 5\)
B. \(5\)
C. \( + \infty \)
D. \( - \infty \)
A. \(\frac{1}{9}\)
B. \(\frac{1}{{10}}\)
C. \(\frac{1}{{12}}\)
D. \( + \infty \)
A. \(a = \frac{1}{6}\)
B. \(a = \frac{1}{8}\)
C. \(a = \frac{1}{{10}}\)
D. \(a = \frac{1}{{12}}\)
A. \(\dfrac{{7x + 4}}{{\sqrt {7{x^2} + 8x + 5} }}\)
B. \(\dfrac{{7x + 4}}{{2\sqrt {7{x^2} + 8x + 5} }}\)
C. \(\dfrac{{14x + 8}}{{\sqrt {7{x^2} + 8x + 5} }}\)
D. \(\dfrac{{7x + 8}}{{2\sqrt {7{x^2} + 8x + 5} }}\)
A. \(y = 9x + 13\)
B. \(y = 9x + 15\)
C. \(y = 9x + 17\)
D. \(y = 9x + 19\)
A. \(x - y = 0\)
B. \(y = 2x\)
C. \(2x - y = 0\)
D. \(x + y = 0\)
A. \(\lim \dfrac{{{n^2} - {n^3}}}{{2{n^3} + 1}}\)
B. \(\lim \dfrac{{2{n^2} + n}}{{ - 2n - {n^2}}}\)
C. \(\lim \dfrac{{3n + 1}}{{2 - 3n}}\)
D. \(\lim \dfrac{{ - {n^3}}}{{{n^2} + 3}}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247