Giải phương trình: \(y = \sqrt {7{x^2} + 8x + 5} \).

Câu hỏi :

Giải phương trình: \(y = \sqrt {7{x^2} + 8x + 5} \). 

A.  \(\dfrac{{7x + 4}}{{\sqrt {7{x^2} + 8x + 5} }}\) 

B. \(\dfrac{{7x + 4}}{{2\sqrt {7{x^2} + 8x + 5} }}\) 

C. \(\dfrac{{14x + 8}}{{\sqrt {7{x^2} + 8x + 5} }}\) 

D. \(\dfrac{{7x + 8}}{{2\sqrt {7{x^2} + 8x + 5} }}\) 

* Đáp án

A

* Hướng dẫn giải

\(y = \sqrt {7{x^2} + 8x + 5}  \Rightarrow y' = \dfrac{{\left( {7{x^2} + 8x + 5} \right)'}}{{2\sqrt {7{x^2} + 8x + 5} }} = \dfrac{{7x + 4}}{{\sqrt {7{x^2} + 8x + 5} }}\)     

Chọn A.

Copyright © 2021 HOCTAP247