A. Hàm số \(y = f\left( x \right)\) có đạo hàm tại \(x = 0\) nhưng không liên tục tại \(x = 0\).
B. Hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0\) nhưng không có đạo hàm tại \(x = 0\).
C. Hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm tại \(x = 0\).
D. Hàm số \(y = f\left( x \right)\) không liên tục và không có đạo hàm tại \(x = 0\).
C
Dễ thấy hàm số liên tục tại \(x = 0\) vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = 0\).
\( \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{x} \Rightarrow \) Hàm số có đạo hàm tại \(x = 0\).
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247