Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A,D\) và \(SA \bot \left( {ABCD} \right)\). Biết \(SA = AD = DC = a\) , \(AB = 2a\). Khẳng định nào sau đây là sa...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A,D\) và \(SA \bot \left( {ABCD} \right)\). Biết \(SA = AD = DC = a\) , \(AB = 2a\). Khẳng định nào sau đây là sai ? 

A. \(\left( {SBD} \right) \bot \left( {SAC} \right)\) 

B. \(\left( {SAB} \right) \bot \left( {SAD} \right)\) 

C. \(\left( {SAC} \right) \bot \left( {SBC} \right)\) 

D. \(\left( {SAD} \right) \bot \left( {SCD} \right)\) 

* Đáp án

A

* Hướng dẫn giải

Ta có: \(\left\{ \begin{array}{l}AD \bot AB\\AD \bot SA\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right)\). Mà \(AD \subset \left( {SAD} \right) \Rightarrow \left( {SAD} \right) \bot \left( {SAB} \right)\).

Gọi \(E\) là trung điểm của \(AB\). Dễ dàng chứng minh được \(ADCE\) là hình vuông.

\( \Rightarrow CE = AD = a = \dfrac{1}{2}AB \Rightarrow \Delta ACB\) vuông tại \(C \Rightarrow AC \bot BC\).

Ta có: \(\left\{ \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right).\) Mà \(BC \subset \left( {SBC} \right) \Rightarrow \left( {SAC} \right) \bot \left( {SBC} \right)\).

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\). Mà \(CD \subset \left( {SCD} \right) \Rightarrow \left( {SAD} \right) \bot \left( {SCD} \right)\).

Vậy đáp án A sai.

Chọn A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021-2022 Trường THPT Bạch Đằng

Số câu hỏi: 40

Copyright © 2021 HOCTAP247