Từ các chữ số thuộc tập X = {0;1;2;3;4;5;6;7} có thể lập

Câu hỏi :

Từ các chữ số thuộc tập X = {0;1;2;3;4;5;6;7} có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số khác nhau sao cho mỗi số tự nhiên đó đều chia hết cho 18.

A. 720.

B. 860.

C. 984.

D. 1228.

* Đáp án

C

* Hướng dẫn giải

Chọn C

Giả sử số lập được có dạng 

Ta có 

Vì  nên ta có các trường hợp sau

Trường hợp 1: a1, a2, a3, a4, a5, a6 được chọn từ 

+ Có 3 cách chọn chọn a6

+ Có 5! cách chọn chọn bộ 5 số 

Suy ra có 3.5! = 360 số.

Trường hợp 2: a1, a2, a3, a4, a5, a6  được chọn từ 

a6 = 0, có 5! cách chọn bộ 5 số 

a60 khi đó a6 có 3 cách chọn, a1 có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 3.4.4!= 408 số

Trường hợp 3: a1, a2, a3, a4, a5, a6 được chọn từ 

a6 = 0, có 5! cách chọn bộ 5 số 

a60 khi đó a6 có 1 cách chọn,  a1 có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 1.4.4! = 216 số

Vậy có: 360 + 408 + 216 = 984 số. 

Copyright © 2021 HOCTAP247