Trong truyện cổ tích Cây tre trăm đốt (các đốt được tính từ 1 đến 100)

Câu hỏi :

Trong truyện cổ tích Cây tre trăm đốt (các đốt được tính từ 1 đến 100), khi không vác được cây tre dài tận 100 đốt như vậy về nhà, anh Khoai ngồi khóc, Bụt liền hiện lên, bày cho anh ta : “Con hãy hô câu thần chú Xác suất, xác suất thì cây tre sẽ rời ra, con sẽ mang được về nhà”. Biết rằng cây tre 100 đốt được tách ra một cách ngẫu nhiên thành các đoạn ngắn có chiều dài là 2 đốt (có thể chỉ có một loại). Xác suất để có dố đoạn 3 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn gần với giá trị nào trong các giá trị dưới đây ?

A.0,142.

B. 0,152.

C. 0,132.

D. 0,122.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp

+) Gọi số đoạn có chiều dài 2 đốt là x và số đoạn có chiều dài 5 đốt là y, lập hệ phương trình giải tìm x, y trong trường hợp x-y=1 , suy ra kết quả thuận lợi cho biến cố “số đoạn 2 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn”.

+) Tính số bộ số (x;y) thoả mãn  2x + 5y = 100  2x + 5y =10 x,yN , suy ra số phần tử của không gian mẫu.

+) Tính xác suất của biến cố.

 

Cách giải

Gọi số đoạn có chiều dài 2 đốt là x và số đoạn có chiều dài 5 đốt là y, ta có hệ phương trình

Gọi A là biến cố số đoạn 2 đốt nhiều hơn số đoạn 5 đốt đúng 1 đoạn” nA=1.

Xét các bộ số (x,y) thoả mãn 2x + 5y =100 x,yN ta có bảng sau:

Copyright © 2021 HOCTAP247