Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các

Câu hỏi :

Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.

A. 725

B. 25

C. 514

D. 931

* Đáp án

D

* Hướng dẫn giải

Chọn D

Số phần tử của (S) là số đường thẳng tạo nên từ 30 điểm đã cho là  C302 = 435

Số cách chọn 2 đường thẳng bất kỳ thuộc tập (S) là số phần tử không  gian mẫu n(Ω)C4352 = 94395

Giao điểm của hai đường thẳng nằm trong đường tròn tức là cũng nằm ở miền trong đa giác 30 đỉnh, khi đó giao điểm 2 đường thẳng cũng là giao điểm hai đường chéo của tứ giác có 4 đỉnh thuộc 30 đỉnh đa giác đã cho, vậy số giao điểm nằm trong đa giác chính là C304 = 27405

Vậy xác suất cần tìm là 

Copyright © 2021 HOCTAP247