Một con lắc lò xo gồm lò xo nhẹ có độ cứng k = 50 N/m, vật nhỏ có khối lượng

Câu hỏi :

Một con lắc lò xo gồm lò xo nhẹ có độ cứng k = 50 N/m, vật nhỏ có khối lượng m = 250 g. Đầu lò xo gắn vào sợi dây AB mềm, nhẹ, không dãn như hình vẽ. Từ vị trí cân bằng, truyền cho vật vận tốc \(v = 100\sqrt 2 \;{\rm{cm}}/{\rm{s}}\) hướng thẳng đứng xuống dưới. Lấy \(g = 10\;{\rm{m}}/{{\rm{s}}^2}\), gốc thời gian \({t_0} = 0\) lúc truyền vận tốc cho vật. Tốc độ trung bình của vật từ  \({t_0} = 0\) cho đến khi nó đạt độ cao cực đại lần thứ nhất là
Một con lắc lò xo gồm lò xo nhẹ có độ cứng k = 50 N/m, vật nhỏ có khối lượng (ảnh 1)

A. 92,35 cm/s.

B. 90,03 cm/s.

C. 88,56 cm/s.

D. 85,16 cm/s.

* Đáp án

D

* Hướng dẫn giải

Phương pháp: 

Độ biến dạng của lò xo khi ở vị trí cân bằng: \(\Delta l = \frac{{mg}}{k}\)

Tần số góc của con lắc lò xo: ω =km

Tốc độ của vật ở vịt rí cân bằng: \({v_{\max }} = \omega A\)

Công thức độc lập với thời gian: \({v^2} = \omega \sqrt {{A^2} - {x^2}} \)

Thời gian chuyển động ném thẳng đứng lên: \(t = \frac{v}{g}\)

Độ cao vật đạt được trong chuyển động ném thẳng đứng hướng lên:  \({h_{\max }} = \frac{{{v^2}}}{{2g}}\)

Sử dụng vòng tròn lượng giác và công thức: \(\Delta t = \frac{{\Delta \varphi }}{\omega }\)

Tốc độ trung bình: \({v_\phi } = \frac{S}{t}\)

Cách giải: 

Tần số góc của con lắc là: ω =km =500,25 =102(rad/s)

Độ biến dạng của lò xo khi ở vị trí cân bằng là:

\(\Delta l = \frac{{mg}}{k} = \frac{{0,25.10}}{{50}} = 0,05(\;{\rm{m}}) = 5(\;{\rm{cm}})\)

Nhận xét: con lắc dao động khi lực đàn hồi có độ lớn bằng 0, dây bị chùng, hệ chuyển động với gia tốc trọng  trường g 

→ Từ thời điểm vật đạt li độ -5 cm đến khi nó đạt độ cao cực đại lần thứ nhất, vật chuyển động giống như  chuyển động ném thẳng đứng lên với vận tốc v 

Ta có vòng tròn lượng giác:

Một con lắc lò xo gồm lò xo nhẹ có độ cứng k = 50 N/m, vật nhỏ có khối lượng (ảnh 2)

Vật dao động điều hòa trong khoảng thời gian từ thời điểm đầu đến thời điểm đầu tiên lò xo không biến  dạng (x = -5 cm), vecto quay được góc là: 

Δφ =3π2-π3=7π6(rad)t1=Δφω=7π6102=7π602(s)

Quãng đường vật dao động điều hòa là: 

\({s_1} = 2A + (A - \Delta l) = 3A - \Delta l = 3.10 - 5 = 25(\;{\rm{cm}})\)

Ở li độ x = -5 cm, áp dụng công thức độc lập với thời gian, ta có vận tốc của vật là:

v=ωA2-x2 =102 102-52 v=506(cm/s)=0,56(m/s)

Vật chuyển động ném lên, quãng đường vật chuyển động được đến khi dừng lại là:

\({s_2} = {h_{\max }} = \frac{{{v^2}}}{{2g}} = \frac{{{{(0,5\sqrt 6 )}^2}}}{{2.10}} = 0,075(\;{\rm{m}}) = 7,5(\;{\rm{cm}})\)

 Thời gian vật chuyển động ném lên là: \({t_2} = \frac{v}{g} = \frac{{0,5\sqrt 6 }}{{10}} = \frac{{\sqrt 6 }}{{20}}(s)\)

Tốc độ trung bình của vật là: 

\({v_{tb}} = \frac{{{s_1} + {s_2}}}{{{t_1} + {t_2}}} = \frac{{25 + 7,5}}{{\frac{{7\pi }}{{60\sqrt 2 }} + \frac{{\sqrt 6 }}{{20}}}} \approx 85,16(\;{\rm{cm}}/{\rm{s}})\)

Chọn D. 

Copyright © 2021 HOCTAP247