Có 3 quyển sách toán, 4 quyển sách lí và 5 quyển sách hóa khác

Câu hỏi :

Có 3 quyển sách toán, 4 quyển sách lí và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên lên một giá sách gồm có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong ba ngăn (mỗi ngăn đủ rộng để chứa tất cả quyển sách). Tính xác suất để không có bất kì hai quyển sách toán nào đứng cạnh nhau.

A. 3691

B. 3791

C. 5491

D. 5591

* Đáp án

D

* Hướng dẫn giải

Chọn D

Giá có 3 ngăn như vậy có 2 vách ngăn, coi 2 vách ngăn này là 2 quyển sách giống nhau. Khi đó

bài toán trở thành xếp 14 quyển sách (2 quyển “VÁCH NGĂN” giống nhau) vào 14 vị trí. Đầu

tiên chọn 2 vị trị trí xếp vách ngăn là C142, 12 vị trí còn lại xếp 12 quyển sách là 12!. Vậy không gian mẫu là C142.12!.

Gọi A là biến cố “không có bất kì hai quyển sách toán nào đứng cạnh nhau”. Ta tìm số cách xếp thỏa mãn A

Đầu tiên ta xếp 11 quyển sách gồm 4 quyển lí, 5 quyển hóa và 2 quyển “VÁCH NGĂN”. Cũng

như trên, ta chọn 2 vị trí xếp 2 quyển “VÁCH NGĂN” trước là C112sau đó xếp 9 quyển còn lại là 9!. Vậy số cách xếp 11 quyển này là C112.9!. Sau khi xếp xong 11 quyển này thì sẽ có sẽ có 12 khe. Ta chọn 3 khe để xếp 3 quyển toán còn lại, là A123.

Vậy số cách thỏa mãn biến cố A là .C112.9!.A123

Vậy .

Copyright © 2021 HOCTAP247