Gọi là đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O( n thuộc N*)

Câu hỏi :

Gọi là đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm On* và X là tập hợp các tam giác có ba đỉnh là các đỉnh của đa giác. Chọn ngẫu nhiên một tam giác thuộc tập X. Biết rằng xác suất chọn được một tam giác vuông thuộc tập X là 113Giá trị của n

A.  9.

B.  14.

C.  10.

D.  12.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Gọi A là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O có 2n đường chéo qua tâm O.

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm O và một đỉnh trong 4n -2 đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là C2n1.C4n-21.

Copyright © 2021 HOCTAP247