a)
i) \(\mathop {\lim }\limits_{x \to - \infty } ( - 3{x^5} + 5{x^3} + x - 2) = \mathop {\lim }\limits_{x \to - \infty } {x^5}( - 3 + \frac{5}{{{x^2}}} + \frac{1}{{{x^4}}} - \frac{2}{{{x^5}}})\)
Mà \(\mathop {\lim }\limits_{x \to - \infty } {x^5} = - \infty ,\mathop {\lim }\limits_{x \to - \infty } ( - 3 + \frac{5}{{{x^2}}} + \frac{1}{{{x^4}}} - \frac{2}{{{x^5}}}) = - 3 < 0\)
Vậy \(\mathop {\lim }\limits_{x \to - \infty } ( - 3{x^5} + 5{x^3} + x - 2) = + \infty \)
ii) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} - 2x + 1} - x}}{{2 - 3x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {4 - \frac{2}{x} + \frac{1}{{{x^2}}}} - x}}{{2 - 3x}}\)
\(=\mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {4 - \frac{2}{x} + \frac{1}{{{x^2}}}} - 1}}{{\frac{2}{x} - 3}}=1\)
b) \(y = {\left( {m + \frac{n}{{{x^2}}}} \right)^4} \Rightarrow y' = 4{\left( {m + \frac{n}{{{x^2}}}} \right)^3}\left( {m + \frac{n}{{{x^2}}}} \right)' = 4{\left( {m + \frac{n}{{{x^2}}}} \right)^3}\left( { - \frac{{2n}}{{{x^3}}}} \right) = - \frac{{8n}}{{{x^3}}}{\left( {m + \frac{n}{{{x^2}}}} \right)^3}\)
Vậy \(y'(1) = - 8n{\left( {m + n} \right)^3}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247