Cho tứ diện ABCD có AB = AC = AD và góc BAC = góc BAD = 60 độ, góc CAD = 90 độ

Câu hỏi :

Cho tứ diện ABCD có AB = AC = AD BAC^=BAD^=60°, CAD^=90°. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ AB IJ?

A. 120°

B. 90°

C. 45°

D. 60°

* Đáp án

B

* Hướng dẫn giải

Chọn B

Cho tứ diện ABCD có AB=AC=AD và BAC^=BAD^=60°, CAD^=90°. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ AB→ và IJ→? (ảnh 1)

Xét tam giác ICD có J là trung điểm CDIJ=12IC+ID

Tam giác ABC AB=ACBAC^=60° ΔABC đều CIAB

Tương tự ta có ΔABD đều nên DIAB

Ta có IJ.AB=12IC+ID.AB=12IC.AB+12ID.AB=0

IJABAB;IJ=90°.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Giữa kì 2 Toán 11 có đáp án (Mới nhất) !!

Số câu hỏi: 499

Copyright © 2021 HOCTAP247