Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và AD, biết AB = CD = a

Câu hỏi :

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và AD, biết AB=CD=a,MN=a32. Tính góc giữa hai đường thẳng AB và CD.

* Đáp án

* Hướng dẫn giải

Cách 1.

Media VietJack

Gọi I là trung điểm của AC. Ta có IMABINCDAB,CD^=IM,IN^ 

Đặt MIN^=α, xét tam giác IMN IM=AB2=a2,IN=CD2=a2,MN=a32.

Theo định lí côsin, ta có

cosα=IM2+IN2MN22IM.IN=a22+a22a3222.a2.a2=12<0

MIN^=1200 suy ra AB,CD^=600.

 

Cách 2.

cosAB,CD^=cosIM,IN^ =IM.INIMIN

MN=INIMMN2=INIM2=IM2+IN22IN.IM

IN.IM=IM2+IN2MN22=a28

cosAB,CD^=cosIM,IN^ =IM.INIMIN=12

Vậy AB,CD^=600.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Giữa kì 2 Toán 11 có đáp án (Mới nhất) !!

Số câu hỏi: 499

Copyright © 2021 HOCTAP247