Cho tứ diện ABCD với đáy BCD là tam giác vuông cân tại C. Các điểm M, N, P, Q lần lượt là trung

Câu hỏi :

Cho tứ diện ABCD với đáy BCD là tam giác vuông cân tại C. Các điểm M, N, P, Q lần lượt là trung điểm của AB, AC, BC, CD. Góc giữa MN và PQ bằng

A. 45°;

B. 60°;

C. 30°

D. 0°.

* Đáp án

* Hướng dẫn giải

Cho tứ diện ABCD với đáy BCD là tam giác vuông cân tại C. Các điểm M, N, P, Q lần lượt là trung  (ảnh 1)

M, N lần lượt là trung điểm của các cạnh AB, AC.

Nên MN là đường trung bình của tam giác ABC. Suy ra MN // BC.

Ta có MN // BC nên góc giữa MN và PQ là góc giữa BC và PQ.

Do đó góc giữa MN và PQ là .

Mà Q, P lần lượt là trung điểm của các cạnh CD, BC nên QP là đường trung bình của tam giác BCD.

Từ đó suy ra QP // BD nên góc  QPC^=CBD^=45°(hai góc đồng vị và với tam giác 

BCD vuông cân tại C).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Giữa kì 2 Toán 11 có đáp án (Mới nhất) !!

Số câu hỏi: 499

Copyright © 2021 HOCTAP247