Cho tứ diện ABCD có AB = CD = a. Gọi M và N lần lượt là trun

Câu hỏi :

Cho tứ diện ABCD có AB = CD = a. Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30°.

A. MN=a4;

B. MN=a33;

C. MN=a32;

D. MN=a2.

* Đáp án

* Hướng dẫn giải

Lấy P là trung điểm của AC.

Với P, N lần lượt là trung điểm của các cạnh AC, BC nên PN là đường trung bình của tam giác ABC

Nên suy ra PN // AB vàPN=AB2=a2 .

Tương tự ta có MP // DC và PM=CD2=a2 .

Do đó góc giữa hai đường thẳng MN và AB chính là góc giữa hai đường thẳng MN và PN và góc đó là PNM^=30°

Áp dụng định lý hàm cos vào tam giác MNP ta có:cosMNP^=MN2+NP2MP22MN.NPcos30°=MN2+a22a222MNa232=MN2MN.aMN=a32.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Giữa kì 2 Toán 11 có đáp án (Mới nhất) !!

Số câu hỏi: 499

Copyright © 2021 HOCTAP247