Chứng minh rằng phương trình a.cos4 x + b.cos3 x  2c.cos x = 2a.sin3 x luôn có nghiệm với mọi tham số a, b, c.

Câu hỏi :

Chứng minh rằng phương trình a.cos4 x + b.cos3 x - 2c.cos x = 2a.sin3 x luôn có nghiệm với mọi tham số a, b, c.

* Đáp án

* Hướng dẫn giải

Ta có a.cos4 x + b.cos3 x - 2c.cos x = 2a.sin3 x.

Xét hàm số f (x) = a.cos4 x + b.cos3 x - 2c.cos x - 2a.sin3 x.

+) Với a = 0 Þ f (x) = b.cos3 x - 2c.cos x = cos x.( b.cos2 x - 2c) = 0

Nên luôn cho nghiệm cos x = 0 (*)

+) Với a ¹ 0 Þ f (x) = a.cos4 x + b.cos3 x - 2c.cos x - 2a.sin3 x

f (x) liên tục trên ℝ nên liên tục trên đoạn  (1)

Ta có:fπ2=2afπ2=2a

fπ2.fπ2=2a.2a=4a2<0(2)

Từ (1) và (2) nên suy ra phương trình f (x) = 0 có ít nhất một nghiệm thuộc khoảng π2;π2  (**)

Từ (*) và (**), vậy suy ra phương trình a.cos4 x + b.cos3 x - 2c.cos x = 2a.sin3 x luôn có nghiệm với mọi tham số a, b, c.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Giữa kì 2 Toán 11 có đáp án (Mới nhất) !!

Số câu hỏi: 499

Copyright © 2021 HOCTAP247