1. \(\lim \frac{{\sqrt {{n^2} + n} - n}}{{\sqrt {4{n^2} + 3n} - 2n}} = \lim \frac{{n\left( {\sqrt {4{n^2} + 3n} + 2n} \right)}}{{3n\left( {\sqrt {{n^2} + n} + n} \right)}}\)
\( = \lim \frac{{\sqrt {4{n^2} + 3n} + 2n}}{{3\left( {\sqrt {{n^2} + n} + n} \right)}} = \lim \frac{{\sqrt {4 + \frac{3}{n}} + 2}}{{3\left( {\sqrt {1 + \frac{1}{n}} + 1} \right)}} = \frac{2}{3}\)
2. \(\left\{ \begin{array}{l}
x + 4 + \sqrt {{x^2} + 8x + 17} = y + \sqrt {{y^2} + 1} \,\,\left( 1 \right)\\
x + \sqrt y + \sqrt {y + 21} + 1 = 2\sqrt {4y - 3x} \,\,\left( 2 \right)
\end{array} \right.\)
Điều kiện: \(y \ge 0\)
\(\begin{array}{l}
\left( 1 \right) \Leftrightarrow (x - y + 4) + \sqrt {{x^2} + 8x + 17} - \sqrt {{y^2} + 1} = 0\\
\Leftrightarrow \left( {x - y + 4} \right) + \frac{{{{\left( {x + 4} \right)}^2} - {y^2}}}{{\sqrt {{x^2} + 8x + 17} + \sqrt {{y^2} + 1} }} = 0
\end{array}\)
\(\begin{array}{l}
\Leftrightarrow \left( {x - y + 4} \right) + \frac{{\left( {x + 4 + y} \right)\left( {x + 4 - y} \right)}}{{\sqrt {{x^2} + 8x + 17} + \sqrt {{y^2} + 1} }} = 0\\
\Leftrightarrow \left( {x - y + 4} \right)(1 + \frac{{\left( {x + 4 + y} \right)}}{{\sqrt {{x^2} + 8x + 17} + \sqrt {{y^2} + 1} }}) = 0\\
\Leftrightarrow y = x + 4
\end{array}\)
Vì \(1 + \frac{{\left( {x + 4 + y} \right)}}{{\sqrt {{x^2} + 8x + 17} + \sqrt {{y^2} + 1} }} = \frac{{\sqrt {{{\left( {x + 4} \right)}^2} + 1} + \left( {x + 4} \right) + \sqrt {{y^2} + 1} + y}}{{\sqrt {{x^2} + 8x + 17} = \sqrt {{y^2} + 1} }} > 0,\forall x,y\)
Thay y = x + 4 vào (2) ta được:
\(\begin{array}{l}
\left( 2 \right) \Leftrightarrow x + \sqrt {x + 4} + \sqrt {x + 25} + 1 = 2\sqrt {x + 16} \\
\Leftrightarrow \left( {\sqrt {x + 4} - 2} \right) + \left( {\sqrt {x + 25} - 5} \right) + \left( {x + 8 - 2\sqrt {x + 16} = 0} \right)\\
\Leftrightarrow x\left( {\frac{1}{{\sqrt {x + 4} + 2}} + \frac{1}{{\sqrt {x + 25} + 5}} + \frac{{x + 12}}{{x + 8 + 2\sqrt {x + 16} }}} \right) = 0
\end{array}\)
\(\left[ \begin{array}{l}
x = 0 \Rightarrow y = 4\\
\frac{1}{{\sqrt {x + 4} + 2}} + \frac{1}{{\sqrt {x + 25} + 5}} + \frac{{x + 12}}{{x + 8 + 2\sqrt {x + 16} }} = 0
\end{array} \right.\,\,\left( {vn} \right)\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247