Tìm nghiệm của phương trình \(\sin 5{\rm{x}} + {\rm{co}}{{\rm{s}}^2}{\rm{x}} - {\sin ^2}{\rm{x}} = 0\)

Câu hỏi :

Tìm nghiệm của phương trình \(\sin 5{\rm{x}} + {\rm{co}}{{\rm{s}}^2}{\rm{x}} - {\sin ^2}{\rm{x}} = 0\)

A.

 \(\left[ {\begin{array}{*{20}{l}}
{{\rm{x}} =  - \frac{{\rm{\pi }}}{6} + {\rm{k}}\frac{{\rm{\pi }}}{3}}\\
{{\rm{x}} =  - \frac{{\rm{\pi }}}{{14}} + {\rm{k}}\frac{{\rm{\pi }}}{7}}
\end{array}} \right.\)

B.

\(\left[ {\begin{array}{*{20}{l}}
{{\rm{x}} =  - \frac{{\rm{\pi }}}{6} + {\rm{k}}\frac{{{\rm{2\pi }}}}{3}}\\
{{\rm{x}} =  - \frac{{\rm{\pi }}}{{14}} + {\rm{k}}\frac{{{\rm{2\pi }}}}{7}}
\end{array}} \right.\)

C.

\(\left[ {\begin{array}{*{20}{l}}

{{\rm{x}} = \frac{{\rm{\pi }}}{6} + {\rm{k2\pi }}}\\
{{\rm{x}} = \frac{{\rm{\pi }}}{{14}} + {\rm{k2\pi }}}
\end{array}} \right.\)

D. \(\left[ {\begin{array}{*{20}{l}}
{{\rm{x}} =  - \frac{{\rm{\pi }}}{6} + {\rm{k2\pi }}}\\
{{\rm{x}} =  - \frac{{\rm{\pi }}}{{14}} + {\rm{k2\pi }}}
\end{array}} \right.\)

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}
\sin 5{\rm{x}} + {\rm{co}}{{\rm{s}}^2}{\rm{x}} - {\sin ^2}{\rm{x}} = 0\\
 \Leftrightarrow \sin 5x + \cos 2x = 0\\
 \Leftrightarrow \sin 5x = \sin \left( { - 2x - \frac{\pi }{2}} \right)\\
 \Leftrightarrow \left[ \begin{array}{l}
5x =  - 2x - \frac{\pi }{2} + k2\pi \\
5x = \pi  + 2x + \frac{\pi }{2} + k2\pi 
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
x =  - \frac{\pi }{{14}} + \frac{{k2\pi }}{7}\\
x = \frac{\pi }{2} + \frac{{k2\pi }}{3} = \frac{{ - \pi }}{6} + \frac{{k2\pi }}{3}
\end{array} \right.
\end{array}\)

Copyright © 2021 HOCTAP247