Cho hình bình hành ABCD. Gọi Ax, By,Cz,Dt lần lượt là các đường thẳng

Câu hỏi :

Cho hình bình hành ABCD. Gọi Ax, By,Cz,Dt lần lượt là các đường thẳng song song với nhau đi qua A,B,C,D và nằm về cùng một phía của mp(ABCD), đồng thời không nằm trong mp(ABCD). Một mặt phẳng (P) lần lượt  cắt Ax,By,Cz,Dt lần lượt tại A’,B’,C’,D’ biết AA’=x,BB’=y, CC’=z. Khi đó DD’ bằng:

A. x+y-z

B. x-y-z

C. x-y+z

D. x+y+z

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Trên Ax lấy điểm A’ sao cho AA’= x

Trên By lấy điểm B’ sao cho BB’ = y

Trên Cz lấy điểm C’ sao cho CC’ = z

Hai mp (AA'B'B) // ( DD'C'C) vì AA'// DD'  và AB// DC

Mặt phẳng (P) cắt 2 mp song song (AA'B'B)và (DD'C'C) theo 2 giao tuyến là A'B'và C'D'

Suy ra: A'B' // C'D' ( định lí giao tuyến).

 Gọi O'=ACBD,O=A'C'B'D'

Xét hình thang AA’C’C có: OO’ là đường trung bình

 OO'=AA'+CC'2=x+z2 (1)

Xét tam giác BDD’D có: OO’ là đường trung bình

OO'=DD'+BB'2 = DD' +y2  (2)

 Từ (1) và (2) suy ra:  x + z =DD' +y 

Nên: DD’ = x + z – y

Copyright © 2021 HOCTAP247