Chứng minh với mọi n thuộc N*, ta có: 3n^3 + 15 chia hết cho 9

Câu hỏi :

Chứng minh với mọi n  N*, ta có: 3n3 + 15 chia hết cho 9

* Đáp án

* Hướng dẫn giải

Đặt un = 3n3 + 15n

+ Với n = 1 ⇒ u1 = 18 ⋮ 9.

+ Giả sử với n = k ≥ 1 ta có: uk = (3k3 + 15k) ⋮ 9

⇒ uk+1 = 3(k + 1)3 + 15(k + 1 )

              = 3(k3 + 3k2 + 3k + 1) + 15k + 15

              = (3k3 + 15k) + 9k2 + 9k + 18

              = (3k3 + 15k) + 9(k2 + k + 2)

              = uk + 9(k2 + k + 2)

Mà uk ⋮ 9 và 9(k2 + k + 2) ⋮ 9

⇒ uk + 1 ⋮ 9.

Vậy un = 3n3 + 15n ⋮ 9 ∀n ∈ N*

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải toán 11: Đại số và Giải tích !!

Số câu hỏi: 419

Copyright © 2021 HOCTAP247