Chứng minh rằng phương trình x^5 – 3x4^ + 5x – 2 = 0 có ít nhất ba nghiệm

Câu hỏi :

Chứng minh rằng phương trình x5  3x4 + 5x  2 = 0 có ít nhất ba nghiệm nằm trong khoảng -2; 5

* Đáp án

* Hướng dẫn giải

Đặt f(x) = x5 – 3x4 + 5x – 2

f(x) là hàm đa thức nên liên tục trên R.

Ta có: f(0) = –2 < 0

            f(1) = 1 > 0

            f(2) = -8 < 0

            f(3) = 13 > 0

⇒ f(0).f(1) < 0; f(1).f(2) < 0; f(2).f(3) < 0

⇒ Phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (0; 1); 1 nghiệm thuộc khoảng (1; 2); 1 nghiệm thuộc khoảng (2; 3)

⇒ f(x) = 0 có ít nhất 3 nghiệm thuộc (0; 3) hay f(x) = 0 có ít nhất 3 nghiệm thuộc (-2; 5).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải toán 11: Đại số và Giải tích !!

Số câu hỏi: 419

Copyright © 2021 HOCTAP247