Cho tứ diện OABC có ba cạnh OA, OB và OC đôi một vuông góc

Câu hỏi :

Cho tứ diện OABC có ba cạnh OA, OB và OC đôi một vuông góc. Gọi H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC). Chứng minh rằng

* Đáp án

* Hướng dẫn giải

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Do H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC) nên:

OH ⊥ (ABC) ⇒ OH ⊥ BC (2)

Mà OA; OH ⊂ (OAH); OA ∩ OH = O (3)

Từ (1); (2) và (3) ⇒ BC ⊥ (OAH)

⇒ BC ⊥ AH

Chứng minh tương tự ta có: AC ⊥ BH

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

⇒ H là trực tâm ΔABC.

b) Gọi M = AH ∩ BC.

+ BC ⊥ (OAH) ⇒ BC ⊥ OM.

ΔOBC vuông tại O có đường cao OM

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

+ OA ⊥ (OBC) ⇒ OA ⊥ OM ⇒ ΔOAM vuông tại O.

OH ⊥ (ABC) ⇒ OH ⊥ AM.

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải toán 11: Hình học !!

Số câu hỏi: 209

Copyright © 2021 HOCTAP247