Giải phương trình \({\cos ^3}x - {\sin ^3}x = \cos 2x\)

Câu hỏi :

Giải phương trình \({\cos ^3}x - {\sin ^3}x = \cos 2x\)

A. \(x = k2\pi ,x = \dfrac{\pi }{2} + k2\pi ,x = \dfrac{\pi }{4} + k2\pi \)

B. \(x = k2\pi ,x = \dfrac{\pi }{2} + k2\pi ,x = \dfrac{\pi }{4} + k\pi \)

C. \(x = k\pi ,x = \dfrac{\pi }{2} + k\pi ,x = \dfrac{\pi }{4} + k\pi\)

D. \(x = k2\pi ,x = \dfrac{\pi }{2} + k\pi ,x = \dfrac{\pi }{4} + k\pi \)

* Đáp án

B

* Hướng dẫn giải

Ta có: \({\cos ^3}x - {\sin ^3}x = \cos 2x\)

\(\Leftrightarrow \left( {\cos x - \sin x} \right)\left( {1 + \sin x\cos x} \right) = \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)\)

\(\Leftrightarrow \left( {\cos x - \sin x} \right)\left( {1 + \sin x\cos x - \sin x - \cos x} \right) = 0\)

\(\Leftrightarrow \left( {\cos x - \sin x} \right)\left( {\sin x - 1} \right)\left( {\cos x - 1} \right) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\sin x = 1\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \dfrac{\pi }{2} + k2\pi \\x = k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Copyright © 2021 HOCTAP247