Cho các chữ số 1, 2, 3, …,9. Từ các số đó có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011.

Câu hỏi :

Cho các chữ số 1, 2, 3, …,9. Từ các số đó có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011.

A. 168

B. 170

C. 164

D. 172

* Đáp án

A

* Hướng dẫn giải

Một số gồm 4 chữ số phân biệt lập thành từ các chữ số A = {1; 2; 3; …; 9} có dạng:

\(\overline {{a_1}{a_2}{a_3}{a_4}} \) với \({a_i} \in A,i = \overline {1,4}\) và \({a_i} \ne {a_j},i \ne j.\)

Do \(\overline {{a_1}{a_2}{a_3}{a_4}}\) không vượt quá 2011 nên \({a_1} = 1\): có 1 cách chọn.

Mặt khác, \(\overline {{a_1}{a_2}{a_3}{a_4}} \) là số chẵn nên \({a_4} \in \left\{ {2;4;6;8} \right\}:\) có \(C_4^1\) cách chọn.

Khi đó, \({a_3}\) có \(C_7^1\) cách chọn.

            \({a_2}\) có \(C_6^1\) cách chọn.

Số cách chọn là \(1.C_4^1.C_7^1.C_6^1 = 168\)

Copyright © 2021 HOCTAP247