A. 4123
B. 3452
C. 225
D. 446
C
Gọi A là tập hợp cách chọn 4 học sinh trong 12 học sinh.
Gọi B là tập hợp cách chọn 4 số học sinh mà mỗi lớp có ít nhất một em.
Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài.
Khi đó \(A = B \cup C;B \cap C = \emptyset .\)
Theo quy tắc cộng ta có:
\(n\left( A \right) = n\left( B \right) + n\left( C \right) \Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right)\)
Ta có \(n\left( A \right) = C_{12}^4 = 495\)
Để tính n(B), ta nhận thấy sẽ chọn mỗi lớp 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh.
Vì thế theo quy tắc cộng và phép nhân, ta có
\(n\left( B \right) = C_5^2C_4^1C_3^1 + C_5^1C_4^2C_3^1 + C_5^1C_4^1C_3^2 \)
= 120 + 90 + 60 = 270
\(\Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right) = 495 - 270 = 225\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247