Trong mặt phẳng Oxy cho đường tròn (C) ngoại tiếp tam giác ABC,

Câu hỏi :

Trong mặt phẳng Oxy cho đường tròn (C) ngoại tiếp tam giác ABC, với \(A\left( {3;4} \right),B\left( { - 3; - 2} \right),C\left( {9; - 2} \right)\). Tìm phương trình đường tròn (C') là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)

A. \(\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 2\)

B. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4\)

C. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 6\)

D. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\)

* Đáp án

B

* Hướng dẫn giải

Gọi phương trình (C) là \({x^2} + {y^2} - 2ax - 2by + c = 0\)

\(A,B,C \in \left( C \right)\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{3^2} + {4^2} - 6a - 8b + c = 0\\{\left( { - 3} \right)^2} + {\left( { - 2} \right)^2} + 6a + 4b + c = 0\\{9^2} + {\left( { - 2} \right)^2} - 18a + 4b + c = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 6x - 8b + c = - 25\\6a + 4b + c = - 13\\ - 18a + 4b + c = - 85\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 2\\c = - 23\end{array} \right.\\ \Rightarrow \left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\end{array}\)

(C ) có tâm \(I\left( {3; - 2} \right)\) bán kính \(R = \sqrt {{3^2} + {{\left( { - 2} \right)}^2} - \left( { - 23} \right)} = 6\)

Gọi \(I' = {T_{\overrightarrow v }}\left( I \right)\Rightarrow \left\{ \begin{array}{l}{x_{I'}} = 3 + 3 = 6\\{y_{I'}} = - 2 + 5 = 3\end{array} \right. \Rightarrow I'\left( {6;3} \right)\)

\(I'' = {V_{\left( {O; - \frac{1}{3}} \right)}}\left( {I'} \right)\\\Rightarrow \left\{ \begin{array}{l}{x_{I''}} = - \frac{1}{3}{x_{I'}} = - \frac{1}{3}.6 = - 2\\{y_{I''}} = - \frac{1}{3}{y_{I'}} = - \frac{1}{3}.3 = - 1\end{array} \right.\\ \Rightarrow I''\left( { - 2; - 1} \right)\)

(C’) có tâm \(I''\left( { - 2; - 1} \right)\) bán kính \(R'' = \left| { - \frac{1}{3}} \right|R = \frac{1}{3}.6 = 2\) nên có phương trình:

\(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4\)

Copyright © 2021 HOCTAP247