Trong khai triển , hệ số của là giá trị nào dưới đây?

Câu hỏi :

Trong khai triển \({\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\), hệ số của \({x^3},(x > 0)\) là giá trị nào dưới đây?

A. 60

B. 80

C. 160

D. 240

* Đáp án

A

* Hướng dẫn giải

 Ta có

\(\begin{array}{l}{\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\\ = C_6^0.{x^6} + C_6^1.{x^5}.\left( {\dfrac{2}{{\sqrt x }}} \right) + C_6^2.{x^4}.{\left( {\dfrac{2}{{\sqrt x }}} \right)^2}+ ... + C_6^6.{\left( {\dfrac{2}{{\sqrt x }}} \right)^6}\\ = C_6^0.{x^6} + C_6^1.{x^{\dfrac{9}{2}}}.2 + C_6^2.{x^3}{.2^2} + ... + C_6^6.{\left( {\dfrac{2}{{\sqrt x }}} \right)^6}\end{array}\)

Hệ số của x3 là \(C_6^2{.2^2} = 60\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 11 năm 2020 trường THPT Nguyễn Hiền

Số câu hỏi: 40

Copyright © 2021 HOCTAP247