A. \({\left( {x - {1 \over 3}} \right)^2} + {y^2} = 1\)
B. \({x^2} + {\left( {y - {1 \over 3}} \right)^2} = 9\)
C. \({x^2} + {\left( {y + {1 \over 3}} \right)^2} = 1\)
D. \({x^2} + {y^2} = 1\)
C
Giả sử hai đường tròn \(\left( C \right),\,\left( {C'} \right)\) có tâm và bán kính lần lượt là O, O' và R, R'
(C') có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) có tâm \(O'\left( { - 2;1} \right),R' = 3\)
Vì \({V_{(I;3)}}(C) = (C') \Rightarrow {V_{(I;3)}}(O) = (O')\)
\(\Rightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 = 3x + \left( {1 - 3} \right).1}\\{ - 1 = 3y + \left( {1 - 3} \right).0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = \dfrac{{ - 1}}{3}}\end{array}} \right.\\ \Rightarrow O(0;\dfrac{{ - 1}}{3})\)
Lại có \(R' = 3R \Leftrightarrow R = 1(do\,{V_{(I;3)}}(C) = (C')\,\,)\)
Vậy phương trình của (C) là: \({x^2} + {\left( {y + \dfrac{1}{3}} \right)^2} = 1\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247