A. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó
B. Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với mọi đường thẳng nằm trong \(\left( \beta \right)\).
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt \(\left( \alpha \right)\) và \(\left( \beta \right)\) thì \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau.
D. Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với \(\left( \beta \right).\)
D
Đáp án A: sai, ta vẽ được vô số đường thẳng song song với mặt phẳng cho trước.
Đáp án B: sai, mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia chứ không phải song song với mọi đường thẳng nằm trong mặt phẳng kia.
Đáp án C: sai, \(\left( \alpha \right)\) và \(\left( \beta \right)\) có thể cắt nhau theo giao tuyến song song với a và b.
Đáp án D: đúng.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247