Số hạng chứa x3 trong khai triển với là :

Câu hỏi :

Số hạng chứa x3 trong khai triển \({\left( {x + \dfrac{1}{{2x}}} \right)^9}\) với \(x \ne 0\) là :

A. \(- C_9^3{x^3}.\)

B. \(\dfrac{1}{8}C_9^3{x^3}.\)

C. \(\dfrac{1}{8}C_9^3.\)

D. \(C_9^3{x^3}.\)

* Đáp án

B

* Hướng dẫn giải

Số hạng tổng quát \({T_{k + 1}} = C_9^k{x^{9 - k}}{\left( {\dfrac{1}{{2x}}} \right)^k} = C_9^2.\dfrac{1}{{{2^k}}}.{x^{9 - 2k}}\).

Số hạng chứa \({x^3}\) ứng với \(9 - 2k = 3 \Leftrightarrow k = 3\).

Vậy số hạng chứa \({x^3}\) là \(C_9^3.\dfrac{1}{{{2^3}}}.{x^3} = \dfrac{1}{8}C_9^3{x^3}.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 11 năm 2020 trường THPT Marie Curie

Số câu hỏi: 32

Copyright © 2021 HOCTAP247