Tìm số nghiệm trong khoảng của phương trình sin x = cos 2x.

Câu hỏi :

Tìm số nghiệm trong khoảng \(\left( { - \pi ;\pi } \right)\) của phương trình sin x = cos 2x.

A. 3

B. 2

C. 1

D. 4

* Đáp án

A

* Hướng dẫn giải

Ta có : sin x = cos 2x

\(\begin{array}{l} \Leftrightarrow \cos \left( {\dfrac{\pi }{2} - x} \right) = \cos 2x\\ \Leftrightarrow \left[ \begin{array}{l}2x = \dfrac{\pi }{2} - x + k2\pi \\2x = x - \dfrac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + \dfrac{{k2\pi }}{3}\\x = - \dfrac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)

Vì \(x \in \left( { - \pi ;\pi } \right)\) nên \(x \in \left\{ {\dfrac{\pi }{6};\dfrac{{5\pi }}{6}; - \dfrac{\pi }{2}} \right\}\)

Vậy có 3 nghiệm thỏa mãn đề bài.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 11 năm 2020 trường THPT Marie Curie

Số câu hỏi: 32

Copyright © 2021 HOCTAP247