Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện

Câu hỏi :

Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện liên tiếp hai phép đối xứng trục.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi QI,α là phép quay tâm I góc α . Lấy đường thẳng d bất kì qua I. Gọi d' là ảnh của d qua phép quay tâm I góc α/2. Lấy điểm M bất kì và gọi M′ = QI,α(M). Gọi M" là ảnh của M qua phép đối xứng qua trục d. M1 là ảnh của M" qua phép đối xứng qua trục d'. Gọi J là giao của MM" với d, H là giao của M″M1 với d'. Khi đó ta có đẳng thức giữa các góc lượng giác sau:

(IM, IM1) = (IM, IM′′) + (IM′′, IM1)

= 2(IJ, IM′′) + 2(IM′′, IH)

= 2(IJ, IH)

= 2α/2 = a = (IM, IM′)

Từ đó suy ra M′ ≡ M1. Như vậy M' có thể xem là ảnh của sau khi thực hiện liên tiếp hai phép đối xứng qua hai trục d và d'.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải sách bài tập Hình học 11 !!

Số câu hỏi: 159

Copyright © 2021 HOCTAP247