Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với AI = x (0 < 0 < a). Lấy là mặt phẳng đi qua I và song song với mặt phẳng (SBD).

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Trường hợp 1 .

I thuộc đoạn AO (0 < x < a/2)

Khi đó I ở vị trí I1

Ta có: (α) // (SBD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì (α) // BD nên (α) cắt (ABD) theo giao tuyến M1N1 ( qua I1) song song với BD

Tương tự (α) // SO nên (α) cắt (SOA) theo giao tuyến

S1T1 song song với SO.

Ta có thiết diện trong trường hợp này là tam giác S1M1N1.

Nhận xét. Dễ thấy rằng S1M1 // SB và S1N1 // SD. Lúc đó tam giác S1M1N1 đều.

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Khi đó I ở vị trí I2. Tương tự như trường hợp 1 ta có thiết diện là tam giác đều

S2M2N2 có M2N2 // BD, S2M2 // SB, S2N2 // SD.

Trường hợp 3. I ≡ O. Thiết diện chính là tam giác đều SBD.

b) Ta lần lượt tìm diện tích thiết diện trong các trường hợp 1,2,3.

Trường hợp 1. I thuộc đoạn AO (0 < x < a/2)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 3. I ≡ O.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tóm lại

Giải sách bài tập Toán 11 | Giải sbt Toán 11

∗ Đồ thị của hàm số S theo biến x như sau:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Sthiết diện lớn nhất khi và chỉ khi x = a/2.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải sách bài tập Hình học 11 !!

Số câu hỏi: 159

Copyright © 2021 HOCTAP247