Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ khi

Câu hỏi :

Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ khi AC2 + BD2 = AD2 + BC2

* Đáp án

* Hướng dẫn giải

Giả sử AB ⊥ CD ta phải chứng minh:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy, kẻ BE ⊥ CD tại E, do AB⊥CD ta suy ra CD ⊥ (ABE) nên CD ⊥ AE. Áp dụng định lí Py-ta-go cho các tam giác vuông AEC, BEC, AED và BED ta có:

Nếu AC2  AD2 = BC2  BD2 = k2 thì trong mặt phẳng (ACD) điểm A thuộc đường thẳng vuông góc với CD tại điểm H trên tia ID với I là trung điểm của CD sao cho Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự điểm B thuộc đường thẳng vuông góc với CD cũng tại điểm H nói trên. Từ đó suy ra CD vuông góc với mặt phẳng (ABH) hay CD ⊥ AB.

Nếu AC2  AD2 = BC2  BD2 =- k2 thì ta có và đưa về trường hợp xét như trên AC2  AD2 = BC2  BD2 = -k2.

Chú ý. Từ kết quả của bài toán trên ta suy ra:

Tứ diện ABCD có các cặp cạnh đối diện vuông góc với nhau khi và chỉ khi AB2 + CD2 = AC2 + BC2.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải sách bài tập Hình học 11 !!

Số câu hỏi: 159

Copyright © 2021 HOCTAP247