Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, AB = a căn 3

Câu hỏi :

Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, AB = a√3, BAD^ = 120o. Góc giữa đường thẳng AC' và mặt phẳng (ADD'A') là 30o. Gọi M là trung điểm A'D', N là trung điểm BB'. Tính khoảng cách từ N đến mặt phẳng (C'MA)

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét:

Do tam giác A’B’D’ là tam giác đều nên C’M ⊥ A’D’

(C'A'D') ⊥ (AA'D'D) & (C'A'D') ∩(AA'D'D) ⇒ C’M ⊥ (AA’D’D)

Nên ∠(AC',(AA'D'D)) = ∠(C'AM) = 30o.

Gọi K là trung điểm của DD’, ta có AKC’N là hình bình hành nên K với N đối xứng nhau qua trung điểm O của AC’. Mà O ∈ (AMC’), do đó

d[N,(C'MA)] = d[K,(C'MA)]

+ Xác định khoảng cách từ K đến (C’MA).

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do (C’MA) vuông góc với (AA’D’D) theo giao tuyến AM nên kẻ KH ⊥ AM, ta có KH ⊥ (C’MA) hay d[K,(C'MA)] = KH.

+ Tính KH.

Ta có: SAMK = SAA'D'D – (SAA'M + SMD'K + SADK) (1)

Trong tam giác AMC’, ta có: AM = CM.cot30o = (3a3)/2.

Trong tam giác AA’M, ta có: AA = AM2 - A'M2  = a6.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải sách bài tập Hình học 11 !!

Số câu hỏi: 159

Copyright © 2021 HOCTAP247