A. \(\frac{a}{7}\)
B. \(\frac{7a}{3}\)
C. \(\frac{3a}{7}\)
D. \(\frac{a}{3}\)
A
Ta có:
Trong \(\Delta SGC\) vuông tại G suy ra \(SG = GC\sqrt 3 = \frac{2}{3}\frac{{3a}}{2} = a.\)
Gọi E, F lần lượt là hình chiếu của G trên MN và SE.
Khi đó \(d\left( {C,\left( {SMN} \right)} \right) = 3d\left( {G,\left( {SMN} \right)} \right) = 3GF\)
Ta có:
\(\begin{array}{l} GE = \frac{1}{2}d\left( {G,AC} \right) = \frac{1}{2}.\frac{2}{3}.d\left( {M,AC} \right)\\ = \frac{1}{3}d\left( {M,AC} \right) = \frac{1}{6}d\left( {B,AC} \right) = \frac{{a\sqrt 3 }}{{12}}. \end{array}\)
Trong \(\Delta SGE\) vuông tại H suy ra
\(GF = \frac{{GE.SG}}{{\sqrt {G{E^2} + S{G^2}} }} = \frac{{\frac{{a\sqrt 3 }}{{12}}.a}}{{\sqrt {{{\left( {\frac{{a\sqrt 3 }}{{12}}} \right)}^2} + {a^2}} }} = \frac{a}{7}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247