Tìm a để các hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\,x + 2a\,\,{\rm{khi }}\,x...

Câu hỏi :

Tìm a để các hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\,x + 2a\,\,{\rm{khi }}\,x < 0}\\ {{x^2} + x + 1\,\,\,{\rm{khi}}\,\,x \ge 0} \end{array}} \right.\) liên tục tại x = 0

A. \(\dfrac12\)

B. \(\dfrac14\)

C. 0

D. 1

* Đáp án

A

* Hướng dẫn giải

Ta có:

\(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} ({x^2} + x + 1) = 1\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} (x + 2a) = 2a\)

Suy ra hàm số liên tục tại \(x = 0 \Leftrightarrow a = \frac{1}{2}\).

Copyright © 2021 HOCTAP247