Cho hình chóp S.ABC trong đó SA, AB, BC vuông góc với nhau từng đôi một. Biết \( SA = 3a, AB = a\sqrt 3 , BC = a\sqrt 6\) . Khoảng cách từ B đến SC bằng

Câu hỏi :

Cho hình chóp S.ABC trong đó SA, AB, BC vuông góc với nhau từng đôi một. Biết \( SA = 3a, AB = a\sqrt 3 , BC = a\sqrt 6\) . Khoảng cách từ B đến SC bằng

A. \(a\sqrt2\)

B. \(2a\sqrt3\)

C. 2a

D. \(a\sqrt3\)

* Đáp án

C

* Hướng dẫn giải

Vì SA,AB,BC vuông góc với nhau từng đôi một nên CB⊥SB

Kẻ BH⊥SC, khi đó d(B;SC)=BH

Ta có: \( SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {9{a^2} + 3{a^2}} = 2\sqrt 3 a\)

Trong tam giác vuông SBC ta có:

\( \frac{1}{{B{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BH = \frac{{SB.BC}}{{\sqrt {S{B^2} + B{C^2}} }} = 2a\)

Copyright © 2021 HOCTAP247