A. 5
B. \(\dfrac{2}{5}\)
C. \( - \infty \)
D. \( + \infty \)
D
\(\begin{array}{l}\lim \dfrac{{\sqrt {{n^3} - 2n + 5} }}{{3 + 5n}}\\ = \lim \dfrac{{\sqrt {{n^3}} \sqrt {1 - \dfrac{2}{{{n^2}}} + \dfrac{5}{{{n^3}}}} }}{{\sqrt {{n^3}} \left( {\dfrac{3}{{{n^3}}} + \dfrac{5}{{\sqrt n }}} \right)}}\\ = \lim \dfrac{{\sqrt {1 - \dfrac{2}{{{n^2}}} + \dfrac{5}{{{n^3}}}} }}{{\left( {\dfrac{3}{{{n^3}}} + \dfrac{5}{{\sqrt n }}} \right)}} = + \infty \end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247