A. 90o
B. 60o
C. 45o
D. 30o
A. Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d.
B. Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).
C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau.
D. Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.
A. 40o
B. 45o
C. 90o
D. 150o
A. \(+ \infty \)
B. \(- \infty\)
C. \(\dfrac{{ - 2}}{5}\)
D. 0
A. \(\lim ({u_n} + {v_n}) = L + M\)
B. \(\lim ({u_n} + {v_n}) = L - M\)
C. \(\lim ({u_n} - {v_n}) = L + M\)
D. \(\lim ({u_n} - {v_n}) = L.M\)
A. \(+ \infty\)
B. \(- \infty\)
C. \(\dfrac{2}{3}\)
D. 0
A. 0
B. 1
C. \(\dfrac{{ - 1}}{6}\)
D. \(\dfrac{1}{2}\)
A. \(m \in \emptyset\)
B. \(m \in\mathbb R\)
C. m = 1
D. m = -1
A. \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = - 1\)
B. \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = - 0\)
C. \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = 1\)
D. Không tồn tại \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}}\).
A. \(+ \infty \)
B. \(- \infty \)
C. -2
D. 1
A. \(\mathop {\lim }\limits_{x \to {x_0}} \,x = {x_0}\)
B. \(\mathop {\lim }\limits_{x \to {x_0}} \,x = 1\)
C. \(\mathop {\lim }\limits_{x \to {x_0}} \,c = {x_0}\)
D. \(\mathop {\lim }\limits_{x \to {x_0}} \,x = 0\)
A. \(- \infty\)
B. \(+\infty\)
C. -2
D. 1
A. \(\lim \left| {{u_n}} \right| = L\)
B. \(\lim \left| {{u_n}} \right| = - L\)
C. \(\lim \,{u_n} = \left| L \right|\)
D. \(\lim \left| {{u_n}} \right| = \left| L \right|\)
A. \( + \infty \)
B. \( - \infty \)
C. 2
D. 1
A. \( + \infty \)
B. \( - \infty \)
C. 3
D. 1
A. \(\dfrac{{ - 5}}{2}\)
B. \(\dfrac{{ - 1}}{{50}}\)
C. \(\dfrac{5}{2}\)
D. \(\dfrac{{ - 25}}{2}\)
A. 1
B. -1
C. -2
D. 2
A. 5
B. \(\dfrac{2}{5}\)
C. \( - \infty \)
D. \( + \infty \)
A. \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty \)
B. \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty \)
C. \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty \)
D. \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = - \infty \)
A. \( + \infty \)
B. \( - \infty \)
C. 0
D. 1
A. Chỉ (1)
B. Chỉ (1), (2)
C. Chỉ (1), (3)
D. Tất cả đều sai
A. 1
B. 2
C. 3
D. 4
A. \(\dfrac{1}{4}.\)
B. \(\dfrac{1}{3}.\)
C. \( - \dfrac{1}{4}.\)
D. \( - \dfrac{1}{3}.\)
A. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 0.
B. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 2.
C. Giới hạn của \(f(x)\) khi \(x \to \infty \) là -2.
D. Không tồn tại giới hạn của \(f(x)\) khi \(x \to \infty \).
A. 3
B. \(\sqrt 3 .\)
C. -3
D. \(\dfrac{1}{3}.\)
A. Có cặp số m, n duy nhất sao cho \(\overrightarrow c = m\overrightarrow a + n\overrightarrow b. \)
B. Có cặp số m, n sao cho \(\overrightarrow c = m\overrightarrow a + n\overrightarrow b \).
C. Có số m duy nhất sao cho \(\overrightarrow a + \overrightarrow b = m\overrightarrow c \).
D. Có số m sao cho \(\overrightarrow a + \overrightarrow b = m\overrightarrow c \).
A. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AD} \).
B. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AB'} \).
C. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).
D. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AD'} \).
A. \(\overrightarrow x = \overrightarrow {GE} \).
B. \(\overrightarrow x = \overrightarrow {CE} \).
C. \(\overrightarrow x = \overrightarrow {CH} \).
D. \(\overrightarrow x = \overrightarrow {EC} \).
A. Nếu mp \(\left( \alpha \right)\) song song với mp \(\left( \beta \right)\) và đường thẳng \(a \subset \left( \alpha \right)\) thì a song song \(\left( \beta \right)\).
B. Nếu mp \(\left( \alpha \right)\) song song với mp \(\left( \beta \right)\) và đường thẳng \(a \subset \left( \alpha \right)\), đường thẳng \(b \subset \left( \beta \right)\) thì a song song với b.
C. Nếu đường thẳng a song song với mp \(\left( \alpha \right)\) và đường thẳng b song song \(\left( \beta \right)\) thì a song song song với b.
D. Nếu đường thẳng a song song với đường thẳng b và \(a \subset \left( \alpha \right)\,,\,\,b \subset \left( \beta \right)\) thì \(\left( \alpha \right)\,,\,\left( \beta \right)\) song song với nhau.
A. Nếu ABCD là hình bình hành thì \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).
B. Nếu \(SA + SC = SB + SD\) thì ABCD là hình bình hành.
C. Nếu ABCD là hình bình hành thì \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \overrightarrow 0 \).
D. Nếu \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 4\overrightarrow {SO} \) thì ABCD là hình bình hành.
A. \(\sqrt 5 \)
B. 1
C. Không xác định.
D. \(\dfrac{{\sqrt {51} }}{{17}}\).
A. Hai đường thẳng không cắt nhau, không song song thì chéo nhau.
B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
C. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song.
D. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
A. Qua một điểm O cho trước có duy nhất một mặt phẳng (P) vuông góc với đường thẳng a.
B. Nếu một đường thẳng vuông góc với hai cạnh cắt nhau của một ngũ giác trong mặt phẳng thì đường thẳng đó vuông góc với ba cạnh còn lại.
C. Nếu một đường thẳng vuông góc với hai cạnh của một tứ giác trong một mặt phẳng thì nó cũng vuông góc với hai cạnh còn lại
D. Trong một tam giác ABC, một đường thẳng vuông góc với hai cạnh của một tam giác thì nó vuông góc với cạnh còn lại.
A. GM = GN
B. \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).
C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
D. \(\overrightarrow {PG} = \dfrac{1}{4}\left( {\overrightarrow {PA} + \overrightarrow {PB} + \overrightarrow {PC} + \overrightarrow {PD} } \right)\) với P là điểm bất kì.
A. 30o
B. 60o
C. 45o
D. 90o
A. Nếu a và b cùng nằm trong một mặt phẳng và cùng vuông góc với c thì \(a \bot b\).
B. Nếu a // b và \(c \bot a\) thì \(c \bot b\).
C. Nếu a , b và c đồng phẳng và a , b cùng vuông góc với c thì a // b.
D. Nếu a // b thì góc giữa a và c bằng góc giữa b và c.
A. \(SB \bot \left( {MAC} \right)\).
B. \(AM \bot \left( {SAD} \right)\).
C. \(AM \bot \left( {SBD} \right)\).
D. \(AM \bot \left( {SBC} \right)\).
A. \(\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \).
B. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
C. \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
D. \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).
A. \(\overrightarrow {A'C'} \).
B. \(\overrightarrow {A'C} \).
C. \(\overrightarrow {A'B'} \).
D. \(\overrightarrow {A'B} \).
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247